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• Column generation: brief introduction

– graph coloring

• Decision diagrams: an alternative approach

– column elimination

– graph coloring

• More structural connections

– vehicle routing

Plan
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• Assign a color to each vertex

• Adjacent vertices are colored differently

• Minimize the number of colors needed

• Fundamental combinatorial optimization problem

• Many applications, e.g., rostering, scheduling, …

• Challenge for exact methods: good lower bounds

Graph Coloring
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• Let 𝐼 be the set of all independent sets (color classes)

• Binary variable xi : use independent set i

• Ensure that each vertex is colored

• Comparatively strong LP relaxation

MIP formulation: Work with color classes
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𝐼 = {{1}, 2 , 3 , 4 ,
1,2 , 1,4 , {2,3}}

drawback: 𝐼 has exponential size



• Master Problem

– Restricted set 𝐼 of variables (‘columns’)

– Initialize to ensure feasibility, e.g., {{1},{2},{3},{4}}

– Solve LP relaxation: shadow price 𝜋𝑖 for vertex 𝑖

• Pricing Problem

– Find new LP variable (an independent set) with negative reduced cost: 1 − σ𝑖 𝜋𝑖𝑦𝑖 < 0

– This is an integer program (binary 𝑦𝑖)

– Add to 𝐼 if it exists, otherwise Master LP solution is optimal

• Repeat until Master LP is optimal

Solve LP via Column Generation
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Integer Optimality: Branch-and-Price
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Solve LP 
with 

ColGen

Solve LP 
with 

ColGen

Solve LP 
with 

ColGen

Solve LP 
with 

ColGen

c(i)=c(j) c(i)≠c(j)

………

… …

Branching constraint:

vertices i and j have the 
same color vs. different color

Branch-and-Price for graph coloring: 
[Mehrotra&Trick 1996] [MMT2011] [GM2012] 

[HCS2012] [MSJ2016] …



• Column generation works with restricted set of columns

– no valid lower bound until optimal LP basis is found *

– stability and convergence issues due to degenerate LP solutions

– solving LP as MIP is not sufficient—embed in branch-and-price search

• Alternative: work with relaxed set of columns

– initial relaxation includes columns that are not feasible

– apply an iterative refinement algorithm to eliminate infeasible columns

– use decision diagrams for compact representation and efficiency

– no need for shadow prices or branch-and-price; just “MIP-it” (or use standard 

branch-and-bound)

Column ‘elimination’ instead of column generation?
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[vH, IPCO 2020] 
[vH, Math. Prog. 2021]

* But can use reduced cost information to find approximate LP bound



Representing all independent sets as decision diagram
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• Exact decision diagram: each  

r-t path corresponds to an 

independent set

• Prior work: compilation method 

that builds the unique minimum 

size diagram
[Bergman, Cire, vH, Hooker, 2012, 2014]



Reformulating the MIP model
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• Integer variable ya : ‘flow’ through arc a

1 2

3 4

minimize number of paths (colors)

one 1-arc per vertex

‘flow conservation’

integrality



1. Exact decision diagrams can be of exponential size (in the size 

of the input graph)

– Use relaxed decision diagrams instead

– Provides lower bound on coloring number

2. Solving the constrained integer flow problem is NP-hard

– Less relevant in practice: MIP solvers scale well

– But we can also use LP relaxation (polynomial)

Two Main Challenges
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• Decision diagram D for problem P is

Exact and Relaxed Decision Diagrams
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exact if Sol(𝐷) = Sol(𝑃)

relaxed if Sol(𝐷) ⊇ Sol(𝑃)

relaxed

(5 nodes)

relaxed

(8 nodes)

exact

(10 nodes)

input graph



Incremental Refinement by Eliminating Conflicts
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Lemma: Conflicts can be found in polynomial time (in the size of the diagram) 

via a path decomposition of the flow

Lemma: Eliminating k conflicts yields diagram of at most O(kn) size 

– Eliminating one conflict increases each layer by at most one node

Lemma: In each iteration, compilation via conflict elimination produces a valid 

lower bound

Lemma: Eliminating all conflicts yields the unique exact diagram

Theorem: Algorithm terminates with an optimal solution (if time permits)

Analysis of overall procedure
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• Theorem: Relaxed decision diagram can be exponentially smaller

than exact decision diagram for proving optimality

Proof sketch: 

- There exists a graph coloring instance class (i.e., paths), 

- and associated vertex ordering, such that

- the exact decision diagram is of exponential size

- while a polynomial-size relaxed decision diagram exists 

that proves optimality

Is there any hope that this might work?  Yes!
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Evaluation on DIMACS benchmark instances
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• Relaxed decision diagram 

can be orders of magnitude 

smaller than exact decision 

diagram to prove optimality, 

but not always

• DSJR500.1 (n=500, m=3,555)

– Exact DD: ≥1M nodes

– Relaxed DD: 627 nodes

(Each instance is solved to optimality by at least one of the two methods)



1. Add upper bound heuristics

2. Two phases: first solve LPs, then solve MIPs

3. Run portfolio approach over multiple orderings

– Vertex ordering can have dramatic impact

4. Embed column elimination in branch-and-bound

Column Elimination: How to prove optimality faster?
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[vH, Math. Prog. 2021]

[Karahalios & vH, 
Constraints 2022]



Branch-and-Bound with Column Elimination
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Column 
Elimination

c(i)=c(j) c(i)≠c(j)

………

… …

Column 
Elimination

Column 
Elimination

Column 
Elimination

Design choices:

• Zykov branching (or Ryan/Foster) on 

two vertices that do not share an 

edge with highest sum of degrees

• Best-bound node processing order

• Branch after 20s of not improving 
neither lower nor upper bound



• Benchmark: DIMACS Coloring 

instances

• Branch-and-Price: [Held, Cook, & 

Sewell, 2012]

• Column Elimination: Uses portfolio of 

orderings [Karahalios & vH, 2022]

Comparison with Branch-and-Price
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• Benchmark: DIMACS Coloring 

instances

• Branch-and-Price: [Held, Cook, & 

Sewell, 2012]

• Column Elimination: Uses portfolio of 

orderings [Karahalios & vH, 2022]

• CliColCom: [Heule, Karahalios, & vH, 

CP2022]

Comparison with State of the Art
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• Column elimination via decision diagrams is a promising 

alternative to column generation

• Q: What is needed to apply this to other problems?

• A: Dynamic programming formulation of ‘pricing problem’

– Provides the transition rules to compile the decision diagram

– Instead of solving for one column, we explicitly represent all columns

– Solve the LP (or IP) over the entire set of columns!  No need to price.

• Next application: Vehicle Routing

Generalization

20



Case Study: Truck-Drone Routing
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• One truck + one drone

• Possible legs include:

truck, drone, combined

• Example route duration =

max{1, 0.5+0.5} +

1 +

1 +

max{1+1, 0.5+0.5} +

max{1, 0.5+0.5}

= 6

Depot
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truck speed: 1 unit per edge

drone speed: 0.5 unit per edge



• TSP-D: Traveling Salesperson with a Drone

• Drone speed = α * truck speed (for some fixed α)

• Goal: minimize route duration

• Assumptions:

Definition of TSP-D
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State of the art: Branch-and-Price
• Master LP: set partitioning model
• Pricing: DP model (with ng-route 

relaxation)

[Roberti & Ruthmair, TS2021]



Dynamic Programming Model for TSP-D
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Set of controls

• truck leg for customer i: Ti

• drone leg: Di

• combined leg: Ci

0

2

13 4

State definition (S, LC, LT, t), where

• S = customers visited so far

• LC = latest location visited by both vehicles

• LT = latest location visited by truck alone

• t = time spent by the truck traveling alone since leaving LC

Route: T1, T2, D4, C3, C0

({1},0,1,2)

({1,2},0,2,4)

({1,2,4},2,2,0)

({1,2,3,4},3,3,0)

T1

T2

D4

C3

C0

2
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2

max{2+1-4, 0} = 0

1

1

marginal increase 
of total travel time

({ },0,0,0)

({0,1,2,3,4},0,0,0)

[Roberti&Ruthmair, 2021]



• Top-down DD compilation can be defined 

by state transition function of DP model
[Bergman et al. 2016]

– DD nodes are associated with DP states

– DD arc labels are given by allowed controls

– similar to state-transition graph in DP

• Apply the previous DP model for TSP-D
– exact diagram represents all feasible solutions

– shortest path = optimal solution, but exponential size

• How to compile relaxed decision diagram?
– apply route relaxation DP (e.g., ng-route), or

– define new relaxed DD via Column Elimination

Decision Diagram Compilation for TSP-D
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({1},0,1,2)

({1,2},0,2,4)

T1
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Derive Bound From Constrained Network Flow
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Constrained integer network flow model (NP-hard):

Lagrangian relaxation:
‒ Add dual variable to arc weights

‒ Shortest path in DD (integral)

LP relaxation:

‒ 0 ≤ 𝑦𝑎 ≤ 1
‒ Use off-the-shelf LP solver



• Observation: Given a DP model representing a route relaxation R, the 

associated decision diagram DR contains exactly all feasible paths 

corresponding to R

• Let 

– SPLP(R) be the set partitioning LP model with the DP pricing problem

– CFLP(DR) be constrained network flow LP defined over D

– LR(DR) be the Lagrangian relaxation of the constrained network flow defined over D

Equivalence of Relaxation Bounds
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Theorem: SPLP(R), CFLP(DR), and LR(DR) have the same optimal 

objective value



• Resolve conflicts along solution paths by refining the DD

Going Beyond the ng-Route Bound
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Type 1: objective function Type 2: repeated visits

Duration = 7 Path length = 6 Customer 3 repeated



Overall Framework
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Construct initial DD-based route relaxation

Compute lower bound (LP flow or Lagrangian)

Refine conflicts along solution paths



• Evaluate two variants

– DD-Flow: lower bound from constrained network flow LP

– DD-Lagrangian: lower bound from Lagrangian

– both apply iterative refinement based on conflicts

• Comparison with state-of-the-art bound for TSP-D

– column generation model from [Roberti&Ruthmair, TS2021]

– set partitioning LP using ng-route relaxation

• Benchmark

– random instance generation [Poikonen et al., 2019]

• Upper bound

– best solution found by CP in 1h [Tang et al, CPAIOR19]

Experimental Evaluation on TSP-D
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Optimality gap improvement over time
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DD-Flow
DD-Lagrangian
ng-route

DD-Flow
DD-Lagrangian
ng-route



Optimality gap for varying problem sizes
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DD-Flow DD-Lagrangianng-route

(Time limit for DD methods is the ng-route solving time)



Optimality gap for larger instances
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DD-Flow DD-LagrangianMath Prog

• Column generation does not scale 

beyond 30 locations

• We therefore compare to LP relaxation 

of MIP model proposed by 

[Roberti&Ruthmair, 2019]



• Column Elimination with relaxed decision diagrams can be used 

as an alternative for column generation/branch-and-price

– Replaces pricing problem with incremental refinement by eliminating 

conflicts

– Provides a lower bound at each iteration.  Can solve as LP or MIP.

– Avoids LP degeneracy and related convergence and stability issues

– When defined on the dynamic program for pricing problem it produces the 

same set partitioning LP bound

• Competitive results on graph coloring and TSP+drone routing

Conclusion

33


